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In this paper, we propose a Reinforcement Learning (RL) based Coding Unit (CU) early termination algo-
rithm for High Efficiency Video Coding (HEVC). RL is utilized to learn a CU early termination classifier
independent of depths for low complexity video coding. Firstly, we model the process of CU decision
as a Markov Decision Process (MDP) according to the Markov property of CU decision. Secondly, based
on the MDP, a CU early termination classifier independent of depths is learned from trajectories of CU
decision across different depths with the end-to-end actor-critic RL algorithm. Finally, a CU decision early
termination algorithm is introduced with the learned classifier, so as to reduce computational complexity
of CU decision. We implement the proposed scheme with different neural network structures. Two dif-
ferent neural network structures are utilized in the implementation of RL based video encoder, which
are evaluated to reduce video coding complexity by 34.34% and 43.33%. With regard to Bjøntegaard delta
peak signal-to-noise ratio and Bjøntegaard delta bit rate, the results are �0.033 dB and 0.85%, �0.099 dB
and 2.56% respectively on average under low delay B main configuration, when compared with the HEVC
test model version 16.5.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

High Efficiency Video Coding (HEVC) [1] is the ongoing video
coding standard developed by the Joint Collaborative Team on
Video Coding (JCT-VC), which makes a big step on compression
efficiency to reduce half bit rate of H.264/AVC while maintaining
the same video quality. The advantage of HEVC is the compression
capability of supporting 4K Ultra High Definition (UHD) of
3840 � 2160 or 4096 � 2160 resolutions, and up to 8K UHD of
8192 � 4320 resolution. However, the deployment complexity of
HEVC restricts its worldwide application in many emerging real-
time applications, such as live video broadcasting, real-time video
chatting, as well as applications on mobile platforms with limited
power and computing resources, e.g., smart phones and drones.
Reducing the encoder’s computational complexity with acceptable
coding performance losses attracts great attention in the academ-
ical and industrial society.
Recursive Coding Tree Unit (CTU) partition technology plays a
key role in improving coding efficiency of HEVC in comparison
with H.264/AVC. Each frame of the video sequences is partitioned
into blocks of different sizes, noted as Coding Units (CUs). Quad-
tree is adopted as the partition structure towards flexible CU par-
tition. However, brute-force searching of the quad-tree based on
Rate Distortion Optimization (RDO) for the optimal CU combina-
tion is time consuming. Thus, fast CU decision algorithms are pro-
posed to reduce Rate Distortion (RD) cost comparison for video
coding parameter decisions meanwhile guarantee compression
quality, such as predictions of CUs, Prediction Units (PUs) and
Transform Units (TUs). CU decision early termination as one group
of fast CU decision algorithms, has been studied for its simplicity
and efficiency.

The state-of-the-art researches on fast CU decisions focus on
optimizing the CU decision by dividing and controlling the recur-
sive RD cost comparison process for each CU depth separately.
The encoder performance for each depth is separately optimized
before being implemented to optimize the overall CU performance.
Existing methods on fast CU decision can be divided into two cat-
egories, i.e., statistical methods and machine learning based
methods.
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Fig. 1. Quad-tree structure of partitioning CTU into CUs. Each quad-tree has 85
nodes corresponding to candidate CUs indexed by LID in f0;1;2; . . . ;84g.

N. Li et al. / J. Vis. Commun. Image R. 60 (2019) 276–286 277
To statistical methods, statistical relationships among neigh-
boring CUs are considered [2,3]. Jung et al. [4] proposed a fast
mode decision method based on ordering modes adaptively for
CU decisions. Kim et al. [5] adjusted the threshold for early termi-
nating the RD cost comparison so as to reduce decision complexity
of partitioning current CU, which considers both the spatial corre-
lation of CU depths and the probability of the SKIP mode among
neighboring CUs. Ahn et al. [6] introduced a method on combining
CU early termination and fast mode decision to reduce encoder’s
complexity of HEVC. Shen et al. [7] introduced an adaptive CU early
termination method based on the texture homogeneity.

To machine learning based methods, Support Vector Machine
(SVM) [8–12], Bayesian Theory [13–15], Markov Model [16,17],
Decision Tree (DT) [18,19], and Neural Network [20–22] were
adopted to model CU decision as classifiers, which were learned
from CU decision samples for developing fast CU decision algo-
rithms. Zhang et al. [8,9] proposed a three-output joint classifier
consisting of multiple binary SVM classifiers with different param-
eters. Zhu et al. [10] proposed to model the recursive CU decision as
a binary SVM classifier, whereas variable PU modes selection was
modeled with multi-class SVM. Zupancic et al. [13] proposed a
novel scheme comprising two types of block testing orders, includ-
ing the normal CU visiting order and the reverse CU visiting order.
Naïve Bayes algorithm is implemented for reverse CU decision opti-
mization. Shen et al. [14] proposed to learn the CU decision scheme
with Bayesian decision based on two-class formulation of CU deci-
sion prediction. Kim et al. [15] jointly utilized on-line and off-line
learning to avoid unnecessary RD cost comparison based on the
Bayesian decision rule. Markov Random Field (MRF) was applied
in [16] to incorporate the features and the neighboring information,
so as to reduce CU decision complexity for coding inter frames.
Chen et al. [17] smoothed the copying-based prediction through
theoretical analyses of the optimal weights of filters with first-
order GaussianMarkovmodel. Decision trees were built and imple-
mented to reduce the encoder decision complexity through early
terminating the recursive RD cost comparison process in [18]. For
intra-frame coding extension of screen content in HEVC, Duanmu
et al. [19] designed decision tree classifiers with chosen features
to distinguish different types of blocks. Taking into account the pre-
diction accuracy, encoder memory consumption and model sim-
plicity, fast CU decision prediction was modeled by Duanmu et al.
[20] as a two layer neuron network classifier for screen content
compression. Liu et al. [21] utilized Convolutional Neural Network
(CNN) to exploit topology information for CU decision. To reduce
the encoder complexity for HEVC with deep structure, Xu et al.
[22] proposed a hierarchical CU decision map to predict CTU parti-
tion patterns with one pass of convolution computation.

RL and deep RL are also applied in video coding control and
optimization separately [23,24]. Helle et al. [23] proposed to learn
a set of binary classifiers for nodes in the tree. RL is adopted to
learn binary classifier, which optimized CU decision separately
for different depths. To utilize RL for video encoder control, CU
decision was set as state-action pair in [24]. However, the joint
prediction accuracy of CUs at different depths is not the same as
the overall prediction accuracy of CUs across different depths.

This motivates us to learn a CU decision algorithm independent
of depths regarding to the cumulative performance of the overall
long-term CU decision trajectories. Primarily, we make the follow-
ing contributions.

(1) We model the RD cost comparison of CU decision as a MDP
according to the Markov property across CU depths, towards
low complexity video coding.

(2) We learn a CU early termination classifier with the end-to-
end actor-critic RL algorithm from trajectories of CU deci-
sion, which is independent of CU depths and approximated
with one hidden layer neural network.

(3) A CU early termination algorithm which requires negligible
computational computational overhead in comparison to
the whole CTU partition process is derived from the CU early
termination classifier.

The paper is organized as follows. Section 2 presents the moti-
vation and analyses. The proposed framework of encoding with RL
based CU early termination algorithms is introduced in Section 3. A
CU early termination classifier independent of depths is learned
with RL based on the MDP for CU early termination in Section 4.
The CU early termination algorithm derived from the CU early ter-
mination classifier is proposed for low complexity video coding in
Section 5. Experimental results are presented in Section 6 to
demonstrate the efficiency of the proposed RL based CU early ter-
mination algorithm. Section 7 concludes this paper.
2. Motivation and analyses

Fig. 1 presents a full quad-tree with hierarchical coding block
partition structure corresponding to CU decision for one CTU in
HEVC. CU of larger size at lower depth, e.g., CU of size 64 � 64, is
grouped to D0. CUs at the full quad-tree are distinguished by the
proposed LID in Fig. 1 from different depths and locations, where
LID 2 f0; . . . ;84g. CU at D0 is recursively partitioned into a subset
of CUs of size ranging from 64 � 64 to 8 � 8. The optimal combina-
tion of CUs for one CTU partition is selected through brute-force

searching of CU from different depths. There are ð24 þ 1Þ4 þ 1 =
83,522 combinations of CUs to be checked before obtaining the
optimal combination of CUs.

To lower the complexity of CU partition, CU early termination is
discussed in this paper, which is to determine whether the rest of
RD cost comparison is eliminated or not for CU partition given the
current CU. The potential Time Saving (TS) ratio of CU early termi-
nation is statistically analyzed, which is defined as

TS ¼
Xn
i¼0

ðTRDO
i � Tli Þ=

Xn

i

TRDO
i � 100%; ð1Þ

where n is the number of CTUs. TRDO
i is the running time consump-

tion of partitioning one CTU indexed i according to RD cost compar-
ison. Tli is the time consumption of partitioning CTU indexed with i
through early terminating RD cost comparison for specific CU
decision.



Table 1
Ratio of different depths and potential time saving of applying early termination to
D0, D1, D2 and D3.[unit: %].

Sequence QP CU depth distribution Potential
time
saving

D0 D1 D2 D3

BasketballPass 22 40.4 20.4 20.0 19.2 36.2
27 43.1 22.0 20.6 14.3 38.7

416 � 240 32 46.4 25.7 19.5 8.5 41.8
37 55.7 26.2 14.1 3.9 49.5

BQMall 22 23.3 27.4 30.0 19.2 23.4
27 39.2 25.5 22.7 12.6 36.0

832 � 480 32 49.3 24.5 18.5 7.80 44.0
37 58.6 23.4 14.0 4.00 51.4

FourPeople 22 60.8 23.4 12.5 3.40 53.2
27 76.2 15.5 6.60 1.70 64.6

1280 � 720 22 83.4 11.6 4.20 0.80 69.9
27 89.0 8.20 2.40 0.30 74.0

Tennis 22 12.2 48.5 31.2 8.20 17.2
27 25.5 48.4 21.8 4.30 28.0

1920 � 1080 32 39.4 44.9 13.9 1.80 38.7
37 55.0 36.6 7.70 0.60 50.2

PeopleOnStreet 22 7.50 23.4 39.8 29.3 10.1
27 14.5 24.4 38.6 22.5 15.9

2560 � 1600 32 19.2 30.6 35.9 14.3 20.5
37 25.9 36.4 29.8 7.80 26.8

Average 43.2 27.4 20.2 9.20 39.5

Fig. 2. Framework of the proposed RL based video encoder.
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The up-bound of TS, noted as T̂S is estimated as the time saving
potential through early terminating the rest of RD cost compar-
isons after reaching the optimal CU at depths D0, D1 and D2, as
shown in Table 1. Derived from the ratio of CU in the optimal CU
and the estimated encoding complexity of CU at D0, D1 and D2,

T̂SðNÞ of applying early termination for low complexity CU decision
at different depths are calculated as

T̂SðNÞ ¼
Xlog2N=4�1

d¼1

22d � TN=2d ; ð2Þ

where N > 4 and CU size is N � N, and d 2 f0;1;2;3g denotes the

depth in {D0, D1, D2, D3}. The overall T̂Sð64Þ of applying early ter-
mination to CU decision at {D0, D1, D2} is estimated as 39.5% in
Table 1. Encoding complexity T of CU decision at depth in {D0,
D1, D2, D3} are estimated from selected video sequences, which
are scaled as T64�64 : T32�32 : T16�16 : T8�8 = 45.32:16.16:4.70:1.
Video sequences covering different motions, texture information
and resolutions are coded with Quantization Parameters (QPs) in
f22;27;32;37g by HM version 16.5, including {‘‘BasketballPass”,
‘‘BQMall”, ‘‘Fourpeople”, ‘‘Tennis”, ‘‘PeopleOnStreet”}. Low delay B
main configuration is adopted in the coding experiments.

We propose to develop an early termination algorithm to
achieve TS. The early termination of CU at lower depths is essential
for time saving of CU decision. In Table 1, overall 70.6% of frames
are coded with CU at D0 and D1. The efficiency up-bound of CU
early termination algorithm in terms of TS is supposed to be close
to 39.5% with negligible coding performance degradation, accord-
ing to Table 1. CU early termination algorithms with computational
complexity larger than 39.5% is assumed to lose more coding
performance.

3. Framework of the proposed RL based video encoder

In the original HM encoder, videos are compressed into bit-
stream through brute-force searching of the optimal CU combina-
tion. To reduce the computational complexity of the CU decision,
we propose to learn a CU early termination classifier independent
of depths with RL algorithm. RL algorithm is adopted to solve CU
decision problem as aMDP. Almost all decision processes withMar-
kov property can be formulated as a MDP. CU decisions satisfy the
Markovproperty [25] that the future is independentof thepast given
the present. Thus, we model the CU decision problem as a MDP.

A framework of optimizing the video encoder with the pro-
posed CU early termination classifier is presented in Fig. 2, which
comprises of two stages, i.e., off-line learning stage and predicting
stage. At the stage of off-line learning, we propose to learn a CU
early termination classifier with RL algorithm from trajectories of
CU decision. Optimal CU partition patterns and features are
extracted from coding process based on the MDP modeling of CU
decision, which is defined as tuples hS, A, P, Ri. CU is the state s.
The state space S is represented with the vector of features for
CUs, which are extracted from the original encoding process. The
CU decision is the action a taken at the current state, including
‘‘split” and ‘‘unsplit”. A indicates the optimal CU decision. The
accuracy of taking action a at state s is the reward r. Many algo-
rithms are developed for optimizing CU decisions to determine
whether the rest of RD cost comparison can be avoided or not for
current CU decision. CU decision classifier referred to policy P is
learned as ActNN from trajectories of hsi; ai; rii with RL algorithm.
Neural Network is adopted to approximate both reward R and pol-
icy P, noted as Critic Neural Network (CrtNN) and Actor Neural
Network (ActNN) respectively. An end-to-end actor-critic RL algo-
rithm is introduced to learn CrtNN and ActNN.

At the stage of prediction, ActNN is to reduce the complexity of
RD cost comparison. A CU early termination algorithm is con-
structed to utilize the ActNN to predict CU decision. Features of
CUs for the ActNN are extracted from the original video encoder
before triggering the ActNN for CU early termination. The weight
of ActNN is selected with metrics on CU decision classification per-
formance at the stage of off-line learning.
4. Problem formulation and reinforcement learning for CU
decision

4.1. MDP modeling for CU decision

The problem of CU early termination satisfies the Markov prop-
erty [25] that the future is independent of the past given the pre-



Fig. 3. MDP modeling for RD cost comparison of CU decision. (a) General MDP for CU decision; (b) MDP for CU early termination.
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sent. CU early termination is modeled as a MDP, which is derived
from MDP of CU decision. The video coding can be achieved
through solving the constrained optimization problem [26]

min
XN
i¼1

Di;j; s:t:
XN
i¼1

Ri;j < Rc; ð3Þ

where CU decision indexed with j is determined with the RD cost
comparison on N steps of CU decision and j ¼ LID. Each CU decision
associates with one pair of bit and distortion fRi;j; Di;jg. Rc is the tar-
get bit. Lagrange Multiplier (LM) [27,28] and Dynamic Program-
ming [29] are applied to the RD cost comparison process.
However, Lagrange algorithm fails to select fRi;j; Di;jgwithin convex
envelop which is produced by introducing k. Programming is more
capable of producing better decisions than Lagrange algorithm
without the constraints on the convex envelop. Programming can
get the optimal solution fR�; D�g of Eq. (3) through producing a grid
of all possible pairs fRi;j; Di;jg. The complexity of programming
increases with the increase of nodes in the grid, which limits the
application of programming in video coding.

We introduce RL to learn classifier to early terminate RD cost
comparison for CU decision. RD cost comparisons over the whole
grid of fRi;j; Di;jg are pruned through selecting a set of fRi;j; Di;jg
to maximize the reward, so as to generate optimal CTU partition
patterns. The optimal CTU partition pattern generated from RD
cost comparison is associated with a trajectory of fRi;j; Di;jg. A
MDP is a tuple hS; A; P; Ri, where S denotes the state space, A
the action space, T : S� A� S ! ½0;1Þ the density function of
state transition probability and R : S� A� S ! R the reward func-
tion. A general MDP of RD cost comparison is shown in Fig. 3(a). Si;j
is the corresponding states of hRi;j;Di;ji categorized as CU decision
at different depths. Transition from Si;j to Siþ1;j stands for the tran-
sition from hRi;j;Di;ji to hRiþ1;j;Diþ1;ji.

The MDP of CU early termination is derived from the general
MDP through specifying the next state atþ1 and the reward rt of tak-
ing actions at at states st . State transitions of CU decision are asso-
ciated with the transition between nodes in the grid. States
associated to CU decision for one CTU partition pattern are shaded
with gray. The corresponded trajectory of tuples hst ; at ; rti is derived
to represent the process of CU decision shown in Fig. 3(b) as
Fig. 4. Schematic diagram for implementing the end-to-end actor-critic RL
algorithm.

fs0; a0; r0; s1; a1; r1; s2; a2; r2; s3; a3; r3; s4; a4; r4; s17; a17; r17; s18; a18;
r18; s19; a19; r19; s20; a20; r20g;
where t is the integer index of states. Transition from current state
st to the next state s0t is triggered by executing action at according to
s0t � Tð�jst ; atÞ. The transition between states of CU decisions derived
from the same parent CU at lower depth is triggered according to
the standard quad-tree traversing order without indicating action
at nor reward rt . The MDP of CU early termination explored in this
paper is specified, where action at 2 fsplit;unsplitg and the state
transition is constrained under the quad-tree traversing order. In
Fig. 3(b), only actions a0 and a4 of states s0 and s4 are split. Early ter-
mination decision of CU at D3 is unnecessary regarding to the neg-
ligible TS potential at D3. States of CU at different depths are
grouped into different stages. Reward rt of taking action split or
unsplit at state st is assigned with function on the optimal CU deci-
sion and the CU decision prediction. Reward rt is collected accord-
ing to long-delay return after checking lower depths of current CU,
quantity factorizations for which is the binary classification accu-
racy of CU decision. RL can be adopted to learn a CU early termina-
tion classifier independent of depths.
4.2. RL networks

A CU early termination classifier independent of depths is
learned as the policy in the MDP. The schematic diagram of apply-
ing the actor-critic RL to learn CU decision classifier is shown in
Fig. 4, which is inherited from [30].

The proposed actor-critic RL scheme is adopted to tackle the
fast CU decision as a class of decision learning and control problem.
The reward in the RL scheme is designed for a step of CU decision.
In general MDP, reward is one of the key component that determi-
nes the performance of the decision learning and control system.

As it is difficult to learn tuples hst; at ; rti for CUs individually. We
introduce to approximate CU early termination classification and
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the corresponding reward with neural network, as it shown in
Fig. 4. ActNN is a CU early termination classifier and CrtNN is a
reward function. ActNN for CU early termination prediction is
updated with prediction performance metrics. Reward r towards
critic metrics is noted as reward function between optimal CU
decision and predicted CU decision. In this work, the CU early ter-
mination classifier ActNN is adjusted according to prediction per-
formance estimation of CrtNN. The CrtNN’s estimation of the
expected return allows the actor to update with gradients of low
variance. ActNN and CrtNN are learned from trajectories of CU
decisions in terms of hst ; at ; rti for CU early termination. The dia-
gram in Fig. 4 is introduced by learning ActNN and CrtNN from pre-
diction errors with regard to the CU decision classification
performance and long-delay reward of the CU early termination.

We utilize neural network with one hidden layer for CU early
termination classification, so as to achieve better prediction accu-
racy with less classification complexity. Feature representation
xðtÞ of CUs is the input of ActNN. Whereas, the input of CrtNN is
produced by appending the action signal aðtÞ to the feature vector
x of current CU. Function approximation of ActNN noted as func-
tion at ¼ FðlðsjhlÞÞ of the state st for CUt is learned by the proposed
end-to-end actor-critic RL algorithm.

Hidden units for ActNN and CrtNN are the same. The number of
hidden neurons W is initialized based on the empirical equation

W ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
pþ q

p þ a; ð4Þ

where p is the number of units at the input layer, q the number of
units at the output layer, a 2 f1; . . . ;10g. Generally, the increasing
number of hidden neurons will enhance the representation capabil-
ity of neural networks. The gain of larger number of neurons is asso-
ciated with the feature selection in the case of the proposed ActNN
and CrtNN. The rising of neuron numbers can bring up extra com-
plexity of feature extraction and neural network computation to
the proposed CU early termination algorithm. Therefore, different
numbers of neurons play different roles in balancing the CU deci-
sion precision and the computation complexity. Under the constrain
of the overhead of computational complexity, we experimentally
evaluated ActNN and CrtNN with different number of neurons in
Section 6. In the future, the neuron number is supposed to be
adjusted considering feature selections.

Generally, in Table 2, we further compare the proposed single-
layer Neural Network (NN) with Deep Neural Network (DNN)
structure for CU decision prediction from various aspects. Hand-
craft features are required by single-layer NN. Features in the
DNN network structure can be handcraft or data driven. The fea-
tures difficult to be defined by humans can be learned from large
data. However, the data driven features can hardly represent the
spatial and temporal correlation among CUs when only pixels of
the current CU was used as input. Besides, the architecture DNN
is much more complex than the single-layer NN, which enhances
the capabilities of learning and representation power for highly
complicated decision problem. However, it also leads to higher
training complexity and requires large amount of training samples.
Given that the number of hidden neurons at layer j is Wj, the
dimensions of input and convolution kernel are p and Cj, the pre-
Table 2
Property comparison between the proposed single-layer Neural Network and Deep Neura

Item Single-layer Neural Netwo

Feature Handcraft
Architecture Single layer

Training complexity Lower
Training samples Small

Prediction complexity p�W0 þW0
diction complexity of the single-layer NN is p�W0 þW0.
Whereas, the prediction complexity of DNN is
p� C0 � C0 �W0 þ

P
jWj�1 � Cj � Cj �Wj, which is relatively

higher than that of the single-layer NN. Overall, the DNN is suitable
for complex decision problem with higher computational cost
while single-layer NN is simpler and with much lower complexity.
In order to reduce the complexity overhead of the proposed RL
based CU decision algorithm, we adopt the single-layer NN in the
CU early termination decision.

4.2.1. End-to-end actor-critic RL algorithm
Algorithm 1 is proposed to learn the ActNN from trajectories of

CU decision extracted from limited CTU partition patterns, which
can be friendly extended for live communication applications.
The proposed RL based CU early termination is presented accord-
ing to the diagram in Fig. 4. The input is a set of pair on feature vec-
tors and corresponding optimal CU decisions extracted from HM
encoder. The return of the proposed actor-critic RL algorithm is
ActNN function approximation noted as lðsjhlÞ and the CrtNN
function approximation Qðs; ajhQ Þ. hl is the weight of ActNN.
Qðs; ajhQ Þ is the state-action value function. We address the train-
ing of CU early termination classifier in terms of optimizing an effi-
ciency measure J, which is the function approximation noted as
CrtNN [30].

The weight of CrtNN is updated by minimizing the prediction
errors as follows

Lc ¼ 1
2
ðJ � ½J00 � r�Þ2; ð5Þ

where return prediction history J00 is expected to be close to the cur-
rent J regarding the return value of each CU decision. The best return
value of the CU decision can be set as r� ¼ 0. In this work, the end-to-
end actor-critic RL algorithm is designed. The weight of ArtNN is
updated towards the optimal critic Uc , say Uc ¼ 0. The objective
function to be minimized for updating the weight of ActNN is

La ¼ 1
2
ðJ � UcÞ2; ð6Þ

where J is the long-delay return value of CU decision reward r. A
general future accumulated efficiency-to-go return at step t is given
by

v t ¼ rtþ1 þ rtþ2 þ . . . ¼
X1
k¼1

rtþk; ð7Þ

where the reward rt provides a method to evaluate and guide the
learning of ActNN towards to the optimal CU decision combination.
Reward function r ¼ f ða�; aÞ regarding to the optimal CU decision a�

and a of the CU decision prediction is controlled according to MDP
for CU decision. For the convenience of discussion, reward of the
ActNN is assigned as simple as ‘‘�1” or ‘‘0” in this work

rt ¼ f ða; a�Þ ¼ �1 at – a�t
0 otherwise

;

�
ð8Þ
l Network.

rk Deep Neural Network

Data driven
Multiple layer
Much higher

Large
p� C0 � C0 �W0 þ

P
jWj�1 � Cj � Cj �Wj
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where the predicted CU decision a is the same as the optimal CU
decision a�, i.e., with minimum classification error of CU decision,
the CU decision classification is assigned with a reward r ¼ 0, other-
wise r ¼ �1, as shown in Eq. (8).

Based on the initialization of the number of hidden neurons
computed as empirical equation, we experimentally adjust the
scale of hidden units for ActNN and CrtNN. Both ActNN and CrtNN
are configured as the nonlinear multilayer feed-forward network
with one hidden layer that comprises the same number of neurons.
Min-max normalization is applied for preprocessing the input vec-
tor at stages of off-line learning and predicting. The ActNN and
CrtNN are adapted according to the chain rule in [30]. The discount
factor is set as 0.99. Learning rate la increases from 0.001 to 0.25
with the step size 0.01 for every 10 steps. Learning rate lc increases
from 0.0001 to 0.25 with step size 0.01 for every 10 steps. The
number of times that all CTUs in S are utilized to update the
weights is noted by the epoch, which is under constraint of Z.
We achieve a moderate CU early termination classifier with limited
samples of CTU partition, which can be friendly extended to live
communication applications. The number of CUs utilized at the
off-line learning stage of the ActNN is relatively small.
4.3. Trajectory sampling and training strategies

The CU decision trajectories are derived from the HM 16.5 and
extended with exploitation. For training, trajectories of CU decision
are filtered out from sequences with different resolutions, texture
and motions. In order to cover sequences with different bit rates,
top 50 frames of four selected test video sequences are encoded
with QPs in f22; 27; 32; 37g. CTU are selected from sequences
‘‘BasketballDrive”, ‘‘FourPeople”, ‘‘BQMall”, ‘‘BQSquare” with reso-
lution ‘‘1920� 1080”, ‘‘1280� 720”, ‘‘832� 480”, ‘‘416� 240”.
Frames are selected from sequences with ratio of 1:4, 1:3, 1:2
and 1:1 individually, so as to balance the sampling among different
sequences. A training set with CU decision trajectories of 3188
CTUs is produced, where trajectories of CU decision for each CTU
is of size 83,522. By adopting the exploration and exploitation
mechanism of RL, 3188 � 83,522 trajectories of CU decision uti-
lized to train the networks are self-adapted generated, which are
collected to provide sufficient trajectory samples for training. Sam-
ples of trajectories in terms of hst ; at ; rti are collected regarding to
MDP of CU early termination.

The feature vector of current CU in this paper is extracted statis-
tically from the HM 16.5 which is related to SKIP, INTER mode,
INTRA mode, including the depth, RD cost of neighboring CUs,
the CU distortion and SKIP flag of current CU, as well as the pro-
posed LID of current CU. We drop half of CTUs partitioned with
CU 64� 64 to balance the CTU partition pattern distribution. Tra-
jectories of CU decision in the training set are shuffled regarding
to CTUs before training, so as to increase content structure invari-
ance among CU decision trajectories, which is proved to be benefi-
cial for learning the ActNN efficiently.

At the stage of validation, sequences ‘‘BasketballDrill”,
‘‘ParkScene”, with resolution ‘‘832� 480”, ‘‘1920� 1080” are
encoded for collecting CU decision trajectories under the same
configuration of training.
Fig. 5. Precision of CTU partition prediction in terms of CTU.
4.4. Parameter setting and validation

The partition pattern of CTU is recognized as a combination of
CUs across different depths. Based on MDP, reward sampling for
trajectories of CU decision is taken in bottom to top order. Given
the state st and action at , reward rt of taking state transition from
st to st 0 is collected from bottom to top along the quad-tree with
Eq. (8). Afterwards, the CU early termination classifier ActNN is
learned from trajectories of CU decision.

The ActNN is selected according to its classification perfor-
mance on the validation set. Performance of applying the CU early
termination classifier ActNN to predict the CU decision is evaluated
with two metrics at the level of CTU and CU respectively. Let I be
the partition matrix for one CTU, each element of which indicates
the CU of size 4 � 4. Towards the number of CTUs that are parti-
tioned fully correct with the proposed CU early termination algo-
rithm, the classification precision H of the proposed CU early
termination algorithm is defined as

H ¼ MI� ;I

n
; ð9Þ

where MI� ;I is the number of CTU partitioned by the proposed CU
early termination algorithmwith the same partition matrix I output
as the optimal CTU partition matrix I�. n is the number of CTU. O is
the overlap between the CTU partition matrix output of the pro-
posed CU early termination algorithm and the optimal CTU parti-
tion matrix, which is defined as

O ¼
P

n

P
I�i \ Ii

n � K ; ð10Þ

where K ¼ 256 is the number of elements in the partition matrix I,
each of which corresponds to a CU of size 4� 4 for the CTU.

Figs. 5 and 6 present H and O of applying ActNN to video
sequences for validation. In Fig. 5, Q of ActNN can reach stability
around 0.65 through exploiting and exploring 3110 steps of CU
decision. After 3110 steps, the update of weights for the ActNN
can rarely and hardly improve the H of the ActNN. O for ActNNwith
different numbers of CU decision steps is shown in Fig. 6. O of the
selected ActNN achieves the relatively best value as 0.88. The fluc-
tuation of H and O illustrates the weight adjustment towards max-
imum return of the ActNN. The experimental analyses indicate the
selected ActNN can achieve relatively high performance on H and O
with 3110 steps of CU decision. We set the ActNN with H and O as
0.65 and 0.88 on the validation set. The complexity reduction per-
formance of the selected ActNN in HM 16.5 is illustrated in compar-
ison to the state-of-the-art CU decision algorithms.



Fig. 6. Overlap between CTU partition prediction and the best CTU partition.

Fig. 7. Flowchart of the proposed CU early termination algorithm.
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5. RL based video coding optimization

A CU early termination classifier ActNN learned from trajecto-
ries of CU decision across depths is utilized to reduce the compu-
tational complexity of CU decision independent of depths.

5.1. Feature selection

In the field of low complexity CU decision, features are selected
regarding to both feature extraction overhead and classification
accuracy [31]. Zhu et al. [31] presented 24 features for CU decision
through surveying the state-of-the-art studies.

To the RL based CU early termination, features of states noted as
xt ¼ fxig are introduced by combining coding information and CU
index LID.

(1) xNB CU Depth is the average depth of CU at the left and above
side of the current CU. For instance, the average depth of
the current CU with size 16 � 16 is 2 when 16 of 4 � 4 units
labeled depth as 2.

(2) xNB CU RDcost is the average RD cost of the left and above CUs
of the current CU.

(3) xCU SKIPFlag is the output of SKIP mode checking to indicate the
flag of skipping.

(4) xCU Distortion is the bypass total distortion after checking the
SKIP mode, which indicates the video texture.

(5) xCU Location is the CU index LID at the quad-tree.

Features are selected for ActNN with different numbers of neu-
rons, according to prediction accuracy and feature extraction com-
plexity. In general, CU decision discrimination prefers features of
high dimension to computational consumption.

The increasing number of features is supposed to bring more
complexity overhead for not only feature extraction, but also the
application of the CU early termination classifier. For neural net-
work based CU early termination classifiers, the structure com-
plexity of the neural network increases with the dimension of
the feature vector. According to the empirical relationship between
the input and the number of hidden neurons, the input dimension
are selected for ActNN with different scales of neurons. Features
from (2) to (4) is selected based on the feature analysis in [31] in
consideration of Pearson Correlation Coefficient and Cross Valida-
tion accuracy.
Algorithm 1. Actor-critic RL for CU early termination
5.2. The proposed RL based CU early termination algorithm

In the proposed CU early termination algorithm, ActNN is
adopted as the CU early termination classifier to predict CU deci-
sion for CUs indexed with t, where t ¼ LID and t 2 ½0;1; . . .84�.
The flowchart of applying the CU early termination classifier inde-
pendent of depths for one CTU partition is shown in Fig. 7.

The procedure of the proposed CU early termination algorithm
starts with CUt , where index t of CU is assigned with LID and LID ¼ 0.
According to the RD cost comparison process for one CTU partition
in HEVC, LID indicates the checking order of CUs. CUt is located and
initialized for compression before checking optimal CTU partition
patterns for CUt with RD cost comparison. ActNN is utilized to pre-
dict decisions for CUt independent of depths.

The coding parameter generated from the previous mode
checking process are collected as the feature vector of current
CU. Features extracted as xt from coding information are utilized
as the input of ActNN to classify the partition of CUt , including
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SKIP/MERGE, INTER and INTRA. According to the feature xt

extracted from coding information of current CU, ActNN is
deployed to determine whether to early terminate the RD cost
comparison or split the current CU into sub-CU, according to the
probability uðtÞ. uðtÞ is the output of ActNN. Threshold constrain
on uðtÞ is defined to determine whether split the current CU or
not. Classification outputs of AcrtNN are illustrated as two cases
in detail.

(i) When uðtÞ P 0, the prediction of CU early termination is
‘‘unsplit”. The RD cost comparison process is early termi-
nated for current CU. LID is updated as LID þ 1 to indicate
the next CU to be checked. CULIDþ1 will be prepared for com-
pression if it does not exceed the LID range of CU in the quad-
tree. Otherwise, CU at the same depth of the parent node
will be checked by updating index t as LID þ 1.

(ii) When uðtÞ < 0, the prediction of CU early termination is
‘‘split”. The partition of current CU is determined as ‘‘split”
and the next CU to be checked with RD cost comparison is
CU noted as 4� LID þ 1;4� LID þ 2;4� LID þ 3 and
4� LID þ 4, which indicate the sub-CU of current CU.

In the above cases, LID indicates the CU to be partitioned. CU
early termination classifier ActNN is applied to CU indexed by LID
from 0 to 20. To the case when prediction of CU early termination
classifier is ‘‘unsplit”, the CU decision process of current CU is
‘‘done”. While in the case that the prediction of CU early termina-
tion classifier is ‘‘split”, the Compress CU is called recursively.
6. Experimental results and analyses

We evaluated the proposed RL based CU early termination,
which was implemented in HM 16.5 [32] for CU decision
prediction. The test sequences were encoded with the low delay B
Table 3
Evaluation of the proposed fast CU decision prediction algorithm on sequences. [UNIT: %/

Sequence Zupancic et al. [13] Jung

BD BD TS BD B
BR PSNR BR P

BQMall 832 � 480 5.14 �0.206 28.02 0.59 �
BQSquare 416 � 240 2.83 �0.118 29.85 0.79 �
BQTerrace 1920 � 1080 3.07 �0.056 40.13 0.54 �
BasketballDrillText 832 � 480 4.93 �0.197 24.04 0.65 �
BasketballDrill 832 � 480 5.12 �0.194 20.65 0.97 �
BasketballDrive 1920 � 1080 5.48 �0.125 39.26 1.60 �
BlowingBubbles 416 � 240 3.38 �0.130 27.06 1.33 �
Cactus 1920 � 1080 4.98 �0.113 23.29 1.36 �
Flowervase 832 � 480 3.39 �0.119 33.10 0.35 �
Flowervase 416 � 240 2.13 �0.111 30.19 �0.51 0
FourPeople 1280 � 720 2.59 �0.095 32.53 �0.1 0
Johnny 1280 � 720 2.66 �0.058 32.11 �0.62 0
Keiba 832 � 480 4.57 �0.171 46.54 0.34 �
Keiba 416 � 240 3.71 �0.190 44.13 0.73 �
Kimono 1920 � 1080 2.62 �0.090 34.71 1.32 �
KristenAndSara 1280 � 720 2.64 �0.080 31.85 �0.54 0
Mobisode 832 � 480 4.08 �0.09 29.36 0.00 0
Mobisode 416 � 240 5.09 �0.222 33.14 �0.06 0
NebutaFestival 2560 � 1600 0.75 �0.029 33.63 1.13 �
ParkScene 1920 � 1080 3.72 �0.116 25.34 0.51 �
PartyScene 832 � 480 2.72 �0.120 36.56 1.72 �
PeopleOnStreet 2560 � 1600 4.81 �0.226 42.09 0.51 �
RaceHorses 832 � 480 4.37 �0.179 37.73 1.37 �
SteamLocomotiveTrain 2560 � 1600 2.05 �0.040 32.20 1.04 �
Tennis 1920 � 1080 7.20 �0.209 42.07 0.62 �
vidyo 720p 3.64 �0.106 32.38 �0.60 0
vidyo3 720p 5.48 �0.176 34.57 0.02 �
vidyo4 720p 4.25 �0.114 32.63 0.35 0

Average 3.79 �0.129 33.38 0.53 �
main configuration. The size of CTU and SCU are 64� 64 and
4� 4, respectively. GOP size is 4. The minimum and maximum
Residual Quad Tree transform size is 4 and 32. Motion search range
is 64. Other parameters were set as default. The proposed algorithm
was evaluated using test sequences recommended by JCT-VC in five
resolutions {416 � 240, 832 � 480, 1280 � 720, 1920 � 1080,
2560 � 1600}. All experiments were carried out in a PC with
3.4 GHz CPU and 32.0 GB memory, Windows 8 operating system.
Experimental comparison between the proposed algorithms and
the state-of-the-art algorithms were conducted as the optimal CU
decision output from HM16.5. PSNR and bit rate were utilized as
the coding efficiency metrics. Bjøntegaard Delta Peak Signal-to-
Noise Ratio (BDPSNR), Bjøntegaard Delta Bit Rate (BDBR) [33] were
adopted to represent the average PSNR and bit rate differences.

Coding performance of the proposed CU early termination algo-
rithms with different settings of the neural network structure are
evaluated in terms of BDBR, BDPSNR and TS. Table 3 presents the
experimental comparison for the proposed CU early termination
classifier ActNN with 6 and 8 neurons, noted as 6NN and 8NN.
These two implementation instances of the framework can present
different coding performances, which indicate the proposed RL
based video encoder can achieve flexible coding performances.
The state-of-the-art algorithm, ZupancicTMM [13] and JungTCSVT
[4], are utilized to evaluate the proposed implementations of the
RL based video encoder as two state-of-the-art works from both
the fields of machine learning based method and statistical meth-
ods. Average BDBR and BDPSNR between JungTCSVT are 0.53% and
�0.019 dB, with TS of 32.82%. As to ZupancicTMM, average BDBR
and BDPSNR are 3.79% and�0.129 dB, with TS of 33.38%. The aver-
age BDBR and BDPSNR of the proposed 8NN are 0.85% and
�0.033 dB, with TS of 34.34%. Whereas, the average BDBR, BDPSNR
and TS of 6NN are 2.56% and �0.099 dB, with 43.33%. The pro-
posed CU early termination algorithm based on 8NN achieves the
similar coding quality with JungTCSVT in terms of BDBR and
dB/%].

et al. [4] Proposed (6NN) Proposed (8NN)

D TS BD BD TS BD BD TS
SNR BR PSNR BR PSNR

0.025 18.38 5.56 �0.227 37.11 0.41 �0.018 25.31
0.033 26.68 3.38 �0.145 35.72 3.93 �0.167 30.90
0.010 37.11 2.15 �0.038 38.70 0.74 �0.013 45.51
0.027 26.09 4.07 �0.169 35.68 0.19 �0.007 22.23
0.038 27.91 3.90 �0.148 32.12 0.25 �0.010 18.32
0.036 33.88 2.06 �0.046 39.45 0.28 �0.006 26.24
0.051 17.46 3.41 �0.136 24.73 3.05 �0.122 17.44
0.033 31.04 2.79 �0.065 43.22 1.16 �0.027 32.40
0.015 39.86 1.31 �0.049 60.18 0.35 �0.015 54.92
.023 40.60 0.53 �0.027 50.06 0.91 �0.045 44.59
.004 48.35 1.66 �0.058 65.28 0.40 �0.014 60.33
.015 47.99 0.90 �0.020 64.05 0.76 �0.010 59.02
0.014 20.52 4.56 �0.170 34.60 0.29 �0.010 20.50
0.038 14.93 5.57 �0.280 27.20 0.71 �0.090 17.22
0.045 31.84 0.35 �0.010 34.74 0.23 �0.010 18.72
.017 46.13 1.58 �0.050 64.67 0.51 �0.020 59.68
.002 36.28 2.30 �0.060 53.62 0.69 �0.020 46.30
.002 28.29 2.42 �0.107 40.05 0.62 �0.028 34.54
0.039 34.94 0.05 �0.000 29.67 0.02 �0.000 14.15
0.016 30.35 2.84 �0.090 46.42 1.22 �0.040 37.17
0.076 19.26 4.74 �0.210 31.58 2.10 �0.090 21.15
0.023 22.48 5.45 �0.250 29.84 0.37 �0.020 15.06
0.056 22.42 2.10 �0.180 26.03 0.81 �0.030 12.40
0.022 42.79 0.45 �0.011 48.21 0.20 �0.004 36.64
0.018 27.66 1.90 �0.057 34.11 0.26 �0.008 19.96
.025 48.96 1.41 �0.043 64.98 0.61 �0.017 60.24
0.01 45.74 2.49 �0.084 61.17 1.27 �0.040 55.12
.012 50.97 1.75 �0.046 60.07 1.45 �0.034 55.59

0.019 32.82 2.56 �0.099 43.33 0.85 �0.033 34.34
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BDPSNR, with 10% of TS complexity more than JungTCSVT. In
ZupancicTMM, CUs in one CTU can be adaptively visited for differ-
ent optimization steps of low complexity video coding. The pro-
posed CU early termination algorithm with 6NN can achieve
more TS than ZupancicTMMwith much better coding quality. Thus,
the effectiveness of the proposed RL based CU early termination is
proved. As the CU partition classifier is approximated with one hid-
den layer neural network over handcraft features, the complexity
of the proposed actor-critic RL for CU early termination is lower
than the state-of-the-art ML based CU decision classifiers.

Besides the coding performance of the proposed CU early termi-
nation algorithm, the classification accuracy of the proposed CU
early termination classifier implemented as different encoders is
shown in Table 4. The overlap O referred to Eq. (10) is adopted to
validate the CTU partition accuracy of the proposed CU early termi-
nation algorithm. Five sequences with different levels of motion,
texture property and resolutions are selected for evaluating the
classification performance of the proposed CU early termination
algorithm. In Table 4, CU early termination algorithms with two
different neural network structures are compared to Zupan-
cicTMM. According to the TS in Table 3, ZupancicTMM achieves
TS of 33.38% which is more than JungTCSVT. Therefore, we com-
pare the CTU partition output of ActNN of different structures with
the method developed in [13], as shown in Table 4. Two approxi-
mations of ActNN with 6 neurons and 8 neurons are noted as
6NN and 8NN respectively. The classification performance of dif-
ferent algorithms are illustrated with the overlap O between the
CTU partition matrix output of different algorithms and the opti-
mal CTU partition matrix in Table 4. The classification performance
in terms of O for 8NN, 6NN and ZupancicTMM are 79.07%, 78.10%
and 77.71% on average with variance of 0.840, 0.950 and 0.860
respectively. The proposed 8NN outperforms both 6NN and Zupan-
cicTMM in many sequences coded with different QPs, which is con-
sistent with the coding performance in terms of BDBR, BDPSNR and
TS in Table 3. Among the proposed 6NN, 8NN and ZupancicTMM,
classification performance on values of O that are better than the
other two in different encoding cases are shown in bold in Table 4.
Table 4
Prediction overlap O of the proposed fast CU decision prediction algorithm in
comparison with the state-of-the-art methods in [13]. [UNIT: %].

Sequence Resolution QP Prediction Overlap O

Zupancic
et al. [13]

Proposed
(6NN)

Proposed
(8NN)

Keiba 416 � 240 22 68.81 61.66 63.81
27 81.00 67.19 74.97
32 80.97 81.47 83.68
37 85.27 84.77 86.38

BQMall 832 � 480 22 69.34 72.79 71.05
27 75.52 80.02 78.70
32 84.11 83.26 84.96
37 84.66 87.42 87.06

FourPeople 1280 � 720 22 78.85 82.15 81.71
27 89.03 89.56 89.65
32 90.87 91.88 92.58
37 94.76 95.24 95.09

Cactus 1920 � 1080 22 60.93 61.99 62.95
27 74.77 77.28 78.24
32 80.08 81.21 81.82
37 83.34 83.94 84.13

PeopleOnStreet 2560 � 1600 22 66.51 66.55 68.20
27 67.39 70.04 71.86
32 68.66 71.63 72.41
37 69.33 71.99 72.16

Average 77.71 78.10 79.07
Variance 0.860 0.950 0.840
ActNN with 6 neurons is more variant than ActNN with 8 neurons,
which brings more coding efficiency degradation according to the
metric value of BDBR and BDPSNR in Table 3 and demonstrates
the coding efficiency of the proposed CU early termination algo-
rithm. The CU decision classification overlap indicates that the pro-
posed CU early termination algorithm can save desirable
computational complexity with acceptable deteriorating of the
encoder performance on BDBR and BDPSNR.

According to the statistical analysis in Section 2, the potential TS
on applying early termination to the HEVC encoder is 39.5% with-
out losing of coding performance. According to the experimental
results, the TS of applying CU early termination algorithm with
ActNN of 8 neurons can save 34.34% computational complexity
which achieves over 86% upper bound of the potential TS for early
termination, with negligible coding performance degradation.
Sequences with different resolutions in {416 � 240, 832 � 480,
1280 � 720, 1920 � 1080, 2560 � 1600} are presented to evaluate
the efficiency of the proposed CU early termination algorithm.
Although ‘‘FourPeople” is encoded in the optimized encoder based
on ActNN of 8 neurons with relatively worse encoder efficiency
towards TS and remarkable degradation in BDBR and BDPSNR as
in the optimized encoder of 6 neurons, the CU decision classifica-
tion accuracy of the proposed optimized encoder for ‘‘FourPeople”
is over 89.76% on average in terms of the overlap O. Therefore, the
proposed CU early termination algorithm is proved to achieve
desirable coding efficiency, so as to reduce the CU decision
complexity.

The computational overhead of ActNN for sequences ‘‘Basket-
ballDrill” and ‘‘ParkScene” coded with four QPs in
f22; 27; 32; 37g are presented in Figs. 8 and 9. The time con-
sumption ratio of applying CU early termination algorithm to
CU with size in f64� 64; 32� 32; 16� 16g are evaluated over
50 frames of each sequence, which are no more than 0.016%.
The percent of time computation on early termination prediction
increases monotonously with the CU early termination ratio for
CU at different depths in Fig. 8. The complexity of the proposed
CU early termination algorithm is negligible, as each CU decision
consumes only 40 floating-point multiplication.

The proposed CU early termination algorithm independent of
depths implemented independent of depths is proposed to focus
on optimizing the overall CU decision for partitioning one CTU.
Computational overhead of applying the CU early termination
algorithm is negligible. If we do not perform RD cost comparison
ig. 8. Percent of CU predicted as early termination at Depth D0, D1 and D2. The top
w corresponds to sequence ‘‘BasketballDrill” compressed by HM 16.5 with QPs in
2; 27; 32; 37g. The bottom row corresponds to sequence ‘‘ParkScene” com-
ressed by HM 16.5 with QPs in f22; 27; 32; 37g. [UNIT: %].
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Fig. 9. Percent of time consumption of CU early termination prediction at Depth D0,
D1 and D2. The top row corresponds to sequence ‘‘BasketballDrill” compressed by
HM 16.5 with QPs in f22; 27; 32; 37g. The bottom row corresponds to sequence
‘‘ParkScene” compressed by HM 16.5 with QPs in f22; 27; 32; 37g. [UNIT: %].

N. Li et al. / J. Vis. Commun. Image R. 60 (2019) 276–286 285
on the following depths when reaching the optimal depth accord-
ing to brute-force RD cost comparison, we can assume from Table 1
that the coding efficiency is very close to the optimal one. The
experimental results of the proposed CU early termination algo-
rithm with ActNN of 8 neurons verify the assumption. On the other
hand, the elimination of RD cost comparison on depths lower than
the optimal depth observed by exhaustive RD cost comparison will
cause coding efficiency degradation, as illustrated with the coding
efficiency results of the proposed CU early termination algorithm
with ActNN of 6 neurons.

The coding efficiency is related to the prediction accuracy of the
proposed CU early termination algorithm, which is independent of
depths. Deliberate feature selection, network structure enhance-
ment and RL algorithm for learning the CU early termination clas-
sifier ActNN will improve the prediction accuracy, so as to improve
the coding efficiency. Efficiency of the proposed framework can be
further improved through deliberate choices on feature selection,
increasing the number of neurons in the hidden layer of neural net-
work, and adjusting the hyper-parameter for the proposed actor-
critic RL algorithm. The prediction accuracy of the proposed CU
early termination algorithm can be further improved through not
only selecting features deliberately, but also increasing the number
of layers for NN. Besides, the structure of the CU early termination
algorithm could be further extended to PU decision for further
complexity reduction. As to the development of feature selection
algorithms and RL algorithms, it is possible to investigate prosper-
ous combinations of feature selection strategies, the classification
approximation function and policy gradient RL algorithm for the
proposed framework.
7. Conclusion

In this paper, a framework of RL based video encoder optimized
with the CU early termination classifier independent of depths is
proposed, where the Rate Distortion (RD) cost comparison process
is modeled as the Markov Decision Process (MDP). The CU early
termination classifier is learned as Actor Neural Network (ActNN)
approximated with one hidden layer neural network by an end-
to-end actor-critic RL algorithm. Then, a CU early termination algo-
rithm is developed independent of depths with the CU early termi-
nation classifier. The flexible of the proposed CU early termination
algorithm is proved with different neural network approximations
of ActNN. The video coding performance of the proposed RL based
CU early termination is evaluated with the experimental compar-
ison with the state-of-the-art methods. The proposed overall
framework of RL based video encoder for CU decision early termi-
nation can be extended to other coding parameter decision prob-
lems in video coding.
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